metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

M. Subha Nandhini,^a R. V. Krishnakumar^b and S. Natarajan^a*

^aDepartment of Physics, Madurai Kamaraj University, Madurai 625 021, India, and ^bDepartment of Physics, Thiagarajar College, Madurai 625 009, India

Correspondence e-mail: s_natarajan50@yahoo.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å H-atom completeness 78% R factor = 0.048 wR factor = 0.133 Data-to-parameter ratio = 16.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. A hydrated complex of DL-alanine with cadmium chloride

In the title complex, *catena*-poly[[[dicadmium(II)]- μ -DLalanine-di- μ -chloro] monohydrate], {[CdCl₂(C₃H₇NO₂)]-H₂O}_n, the DL-alanine molecules exist in the zwitterionic form. The Cd atoms lie on inversion centers and are coordinated by four Cl atoms and two carboxyl O atoms, forming a distorted octahedral environment. These octahedra are linked through Cl–Cl edges and are bridged by the carboxyl groups of the alanine residues, forming a onedimensional polymer chain that extends along [100]. Received 21 July 2003 Accepted 11 August 2003 Online 15 August 2003

Comment

Halagenocadmium-amino acid complexes are interesting, as cadmium is a naturally occurring metallic element, chemically similar to zinc. Cadmium is found to occur naturally in at least one protein, metallothionein (Kagi & Vallee, 1960). A precise determination of the crystal structure of DL-alanine itself was recently carried out in our laboratory (Subha Nandhini et al., 2001). The present study reports the crystal structure of a complex of DL-alanine with cadmium chloride, viz. catenapoly[[[dicadmium(II)]- μ -DL-alanine-di- μ -chloro] monohydrate], (I). The crystal structures of complexes of cadmium chloride with glycine (Thulasidhass & Mohana Rao, 1980), Lproline (Yukawa et al., 1983) and hydroxy-L-proline (Yukawa et al., 1982), L-alanine (Schaffers & Keszler, 1993), sarcosine (Krishnakumar et al., 1996) and β -alanine (Subha Nandhini et al., 2002) have already been reported.

The DL-alanine molecules exist as zwitterions. The torsion angles involving the C1–C2 bond [-3.4 (4), 177.7 (3), -125.2 (3) and 55.9 (4)°; see Table 1] observed in (I) are distinctly different from those observed in DL-alanine [16.3 (2), -164.0 (2), -105.7 (2) and 74.0 (2)°; Subha Nandhini *et al.*, 2001]. The conformation of the alanine molecule about the N–C bond corresponds to the staggered-ethane type.

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved In the crystal structures of the majority of the complexes, the Cd atom has a tetrahedral coordination (Bürgi, 1973;

Figure 1

An ORTEPIII (Johnson & Burnett, 1996) view of title complex, showing part of the polymeric chain and the atom-numbering scheme for the contents of the asymmetric unit. The displacement ellipsoids are drawn at the 50% probability level.

Packing of the molecules in the unit cell, viewed down the b axis.

Liptrot, 1974). In (I), each Cd atom lies on an inversion center and is coordinated by four Cl atoms and two carboxyl O atoms, forming distorted octahedra. The four Cl atoms which coordinate to a Cd atom form a square plane. These square planes extend along the shorter axis, a. The dihedral angle between adjacent square planes is $34.8 (1)^{\circ}$. These square planes are spanned by the carboxyl O atoms, which complete the coordination around the Cd atom. These polyhedra fuse directly by sharing Cl-Cl edges, forming one-dimensional polymeric chains in the [100] direction. The water O atom does not participate in coordination with cadmium. The metal-ligand coordination observed in this structure is remarkably similar to those observed in the crystal structures of complexes of CdCl₂ with L-alanine, L-proline, hydroxy L-proline and β -alanine, and distinctly different from glycine– CdCl₂ and sarcosine–CdCl₂.

Selected interatomic distances are listed in Table 1. The mean Cd-Cl distance, 2.61 (1) Å, is in agreement with the corresponding distances reported in the structures of complexes of CdCl₂ with β -alanine [2.619 (5) Å], L-alanine [2.61 (1) Å], L-proline [2.615 (3) Å], 4-hydroxy-L-proline [2.620 (2) Å], glycine [2.543 (6) Å] and sarcosine [2.589 (1) Å]. The Cd–Cl distances also agree well with those observed in other simple organic complexes of CdCl₂, viz. 2.60 (1) and 2.65 (1) Å for CdCl₂·4H₂O (Leligny & Monier, 1979) and CdCl₂ dipyridine (Paulus, 1969), respectively. The Cd-Cl distances reported for CdCl₂ diimidazole (Flook et al., 1973), viz. 2.706 (2) and 2.731 (2) Å, are longer compared to those in the present structure.

The crystal structure of (I) is illustrated in Fig. 2 and the hydrogen bonds that stabilize it are listed in Table 2. There are no direct interactions between the alanine molecules. The adjacent polymeric chains are interconnected through N- $H \cdots O$ and $N - H \cdots Cl$ hydrogen bonds. The water atom O3 is involved in short contacts with Cl1 [3.234 (3) Å], Cl2ⁱ [3.166 (3) Å] and $O2^{\text{ii}} [3.030 (4) \text{ Å}]$ [symmetry codes: (i) x, $\frac{1}{2} - y, z - \frac{1}{2};$ (ii) 1 + x, y, z].

Experimental

Colourless single crystals of the title complex were grown as transparent plates, using a mixture of water and acetone, containing DLalanine and cadmium chloride in a stoichiometric ratio.

Crystal data

а b в Z

$[CdCl_2(C_3H_7NO_2)] \cdot H_2O$	D_m measured by flotation in a
$M_r = 290.42$	mixture of carbon tetrachloride
Monoclinic, $P2_1/c$	and bromoform
a = 7.1190 (15) Å	Mo $K\alpha$ radiation
b = 14.408 (3) Å	Cell parameters from 25
c = 8.6396 (13) Å	reflections
$\beta = 107.98 \ (2)^{\circ}$	$\theta = 19-32^{\circ}$
V = 842.9 (3) Å ³	$\mu = 3.18 \text{ mm}^{-1}$
Z = 4	T = 293 (2) K
$D_x = 2.289 \text{ Mg m}^{-3}$	Transparent plate, colourless
$D_m = 2.29 \text{ Mg m}^{-3}$	$0.18 \times 0.12 \times 0.10 \text{ mm}$

 $R_{\rm int}=0.095$ $\theta_{\rm max} = 25.3^{\circ}$

 $h = -8 \rightarrow 8$ $k = 0 \rightarrow 17$

 $l = -9 \rightarrow 10$

2 standard reflections

frequency: 60 min

intensity decay: 0.1%

Data collection

Enraf-Nonius sealed-tube diffractometer ω -2 θ scans Absorption correction: ψ scan (North et al., 1968) $T_{\min} = 0.639, T_{\max} = 0.728$ 1797 measured reflections 1541 independent reflections 1469 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.096P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.048$ + 1.0634P] where $P = (F_o^2 + 2F_c^2)/3$ $wR(F^2) = 0.134$ $(\Delta/\sigma)_{\rm max} < 0.001$ S = 1.15 $\Delta \rho_{\rm max} = 2.57 \ {\rm e} \ {\rm \AA}^{-3}$ 1541 reflections $\Delta \rho_{\rm min} = -2.89 \ {\rm e} \ {\rm \AA}^{-3}$ 94 parameters H-atom parameters constrained

Table 1

Selected	geometric	parameters ((A, °).
----------	-----------	--------------	-------	----

Cd1-O1	2.265 (2)	Cd2-Cl1	2.6397 (11)
Cd1-Cl2	2.5697 (10)	O1-C1	1.241 (4)
Cd1-Cl1	2.6635 (9)	O2-C1	1.256 (4)
Cd2-O2 ⁱ	2.352 (3)	N1-C2	1.500 (5)
Cd2-Cl2	2.5669 (8)	C1-C2	1.532 (5)
	. ,	C2-C3	1.501 (5)
O1-Cd1-O1 ⁱ	180	Cl2-Cd2-Cl2 ⁱⁱⁱ	180
O1-Cd1-Cl2	87.73 (7)	O2 ⁱ -Cd2-Cl1	91.59 (7)
O1 ⁱ -Cd1-Cl2	92.27 (7)	$O2^{ii}-Cd2-Cl1$	88.41 (7)
Cl2-Cd1-Cl2i	180	Cl2-Cd2-Cl1	89.02 (3)
O1-Cd1-Cl1	93.33 (7)	Cl2 ⁱⁱⁱ -Cd2-Cl1	90.98 (3)
O1 ⁱ -Cd1-Cl1	86.67 (7)	Cl1-Cd2-Cl1 ⁱⁱⁱ	180
Cl2-Cd1-Cl1	88.44 (3)	O1-C1-O2	127.7 (3)
Cl2 ⁱ -Cd1-Cl1	91.56 (3)	O1-C1-C2	116.1 (3)
Cl1-Cd1-Cl1 ⁱ	180	O2-C1-C2	116.2 (3)
$O2^i - Cd2 - O2^{ii}$	180	N1-C2-C3	109.2 (3)
O2 ⁱ -Cd2-Cl2	91.27 (7)	N1-C2-C1	108.4 (3)
O2 ⁱⁱ -Cd2-Cl2	88.73 (7)	C3-C2-C1	113.9 (3)
O1-C1-C2-N1	-3.4 (4)	01-C1-C2-C3	-125.2 (3)
O2-C1-C2-N1	177.7 (3)	O2-C1-C2-C3	55.9 (4)
	a (") 1		

Symmetry codes: (i) 1 - x, -y, 2 - z; (ii) 1 + x, y, z; (iii) 2 - x, -y, 2 - z.

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
N1-H1A···O3	0.89	2.05	2.900 (5)	158
$N1 - H1B \cdot \cdot \cdot O3^{i}$	0.89	2.03	2.901 (5)	166
$N1-H1C\cdots Cl1^{ii}$	0.89	2.46	3.270 (3)	152

Symmetry codes: (i) $x, \frac{1}{2} - y, \frac{1}{2} + z$; (ii) $1 - x, \frac{1}{2} + y, \frac{3}{2} - z$.

H atoms were placed at calculated positions and were allowed to ride on their respective parent atoms, with C—H = 0.97 or 0.98 Å and N—H = 0.89 Å, with $U_{\rm iso} = 1.5U_{\rm eq}$ (parent atom) for the methyl and amino group, and $U_{\rm iso} = 1.2U_{\rm eq}$ (parent atom) for the rest. No satisfactory H-atom positions were found for the water O atom. Hence, the structure was refined without them. The highest peaks in the final difference map were located at distances less than 0.92 Å from the Cd atoms.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *CAD-4 Software*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 1999) and *ORTEPIII* (Johnson & Burnett, 1996); software used to prepare material for publication: *SHELXL*97.

The authors thank the UGC for the Special Assistance Programme and the Bio-informatics Centre, Madurai Kamaraj University, for providing the Cambridge Structural Database (Allen, 2002).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Bürgi, C. E. (1973). Inorg. Chem. 12, 2321-2435.
- Enraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.
- Flook, R. J., Freeman, H. C., Hug, F. & Rosalky, J. M. (1973). Acta Cryst. B29, 903–906.
- Johnson, C. K. & Burnett, M. N. (1996). ORTEPIII. Report ORNL-6895, Oak Ridge National Laboratory, Tennessee, USA.
- Kagi, J. H. R. & Vallee, B. L. J. (1960). J. Biol. Chem. 235, 3460-3460.
- Krishnakumar, R. V., Rameela, M. P. & Natarajan, S. (1996). Cryst. Res. Technol. 31, 203–207.
- Leligny, H. & Monier, J. C. (1979). Acta Cryst. B35, 569-573.
- Liptrot, G. F. (1974). *Modern Inorganic Chemistry*. London: The English Language Book Society.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Paulus, V. H. (1969). Z. Anorg. Allg. Chem. 369, 38-40.
- Schaffers, K. I. & Keszler, D. A. (1993). Acta Cryst. C49, 1156-1158.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (1999). PLATON for Windows. Utrecht University, The Netherlands.
- Subha Nandhini, M., Krishnakumar, R. V. & Natarajan, S. (2001). Acta Cryst. C57, 614–615.
- Subha Nandhini, M., Krishnakumar, R. V., Sivakumar, K. & Natarajan, S. (2002). Acta Cryst. E58, m307–m309.
- Thulasidhass, R. & Mohana Rao, J. K. (1980). Curr. Sci. 49, 349-349.
- Yukawa, Y., Inomata, Y. & Takeuchi, T. (1983). Bull. Chem. Soc. Jpn, 56, 2125–2128.
- Yukawa, Y., Inomata, Y., Takeuchi, T., Shimoi, M. & Ouchi, A. (1982). Bull. Chem. Soc. Jpn, 55, 3135–3137.